
The Fast Encryption Package

Matt Bishop

August, 1988

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Memorandum 88.3

NASA Cooperative Agreement Number NCC 2-398

389-25599

Research Institute for Advanced Computer Science

strongly recommended you use the library with the password checker; the gah in speed
is considerable.

Each part of the package can be configured and installed separately, or all can be
configured and installed at once. We shall discuss configuration llnd installation of the
entire package; in the process how to configure each part will be detailed. In any case. it
is wisest to configure everything so that the parts can dl be installed with minimum
effort later, if need be.

2. Configuring and Compiling the Package

with no changes. Other versions of UNKX may require some changes.
This package can be compiled on either Berkeley UNIX or System V UNIX machines

1.

2.

3.

4.

5 .

6 .

7.

8.

9.

Determine whether your system is closer to System V or Berkeley UMX and
copy the appropriate file (h1ake.bsd-l or Make.sysv) to hlakefile.
Edit lib/include/mach.h to add the characteristics of your machine if it does
not already contain them. The next section describes how to change these
compile time macros.
Edit passwd/sys.h to set up the characteristics of your system for the password
changing program if it does not already contain them. Section 4 describes how
to set these compile-time macros.
Edit iMakefile. The parameters which may have to be reset are described in
section 5.
Switch to the superuser and type

make install

to install the relevant libraries, programs, and manual pages.
If the password checker has been installed, configure its data files. Section 6
describes how to do this.
If the password checker has been installed, set it up to run every so often. Sec-
tion 7 describes one way to have it do so.
If the password changer has been installed, set up its configuration file. Sec-
tion 8 describes how to do this.
Now relax; you deserve one calm, placid night before you get the report of
users with known passwords, or befon users assault you because they can no
longer use their login name as a password!

3. Include File
There are six parameters that control how the libraries are compiled. These are

described below. All changes should be made in lib/include/rnach.h. The changes
depend on the hardware on which the programs are to run, so the compilation sequence
requires this dependence to be reflected in the file. The last subsection of this section
describes an aid to setting these.

First, start up an editing session on include/mach.h. Set up a conditional compila-
tion sequence for your computer; that is, put a

- 3 -

#i fde f yourcomputer
#endif

where yourcomputer is the constant corresponding to your computer. This should not be
“unix” but rather something that uniquely specifies the system on which the code will be
running. For example, on VAX machines, an appropriate constant would be “vax”. If
necessary, use the host name and add that to the C compiler options in the top-level
Makefile. Some systems have already been configured; they are shown in the following
table.

constant
CRAY2
convex
m68k
m68000
sequent
sun
UtS

V a X

Preconfigured Systems
svstem

CRI Cray 2 runnjng UNICOS
Convex C-1 running Convex UMX
Apple Macintosh II running AOS/UNX

Sequent Balance 21000 running Dynix 2.1
Sun series running 4.2 BSD UNIX Release 3.3
Amdahl5880 running UTS
VAX 1 1 series running 4.3.BSD

SGI IRIS 2500T/3030 running GL2-W3.6

All of the following constants should be in “#define” lines after the “#ifdef’ line
but before the “#endif’ line, since they vary from computer to computer.

3.1. AUTOINC
Define this constant if your machine architecture supports autoincrement addressing

mode, and your C compiler will use it to increment pointers. This forces the use of
autoincrement mode to step through the bit permutation arrays. Do not set this if no
autoincrement addressing mode exists because this will generate a move and an add, as
opposed to a move.

3.2. BITSPERWORD

of bits allocated to the type WORD described below.
Set this to the number of bits per word in your computer. It should be the number

3.3. FIELDS
Define this constant if using the field syntax of C produces faster code than the

shift-and-mask alternative. This (usually) causes the compiler to produce code that uses
bitfield extraction instructions.

3.4. FORMAT
Define this constant to be a format suitable for handing to prinfl3) to print a con-

stant as an array element with the declaration WORD. (You must include the surround-
ing double quotation marks.) For example, if a word is declared as “unsigned int long”,
this would be defined as “’Wx%x,W”’. Choose something your compiler finds
appropriate.

-4-

3.5. NETORDER
This should be defined if the byte ordering is the same as network byte ordering. If

you have defined FIELDS, you probably do not have to define this one, because the code
will probably use bitfield extraction instructions which handle byte ordering properly,
rather than equivalent shift-and-mask instructions, to access parrs of words; But as this is
not guaranteed, you would be wise to do so. It is also a safety measure just in case you
decide to turn off FIELDS later.

3.6. STRUCTFROMTOP
This should be defined if FIELDS is defined and the computer allocates stmcture

elements from the top to the bottom. As with NETORDER, if FIELDS is not defined
this constant probably need not be defined since structure accesses should not be used to
access parrs of a word (and hence the order of the fields in the structure does not matter);
but you should define this constant anyway if appropriate.

3.7. WORD
This should be set to the C type that allocates one machine word of storage. On

most machines this type will be an unsigned long int; however on some machines it may
be a non-portable declaration (for example, on the Convex C-1, to use 64 bit words,
WORD must be defined as unsigned long long inr).

3.8. Examples
The following is a sample definition for a VAX running UMX

6 i f d e f v a x
6 d e f i n e AUTOINC / * u s e a u t o i n c r e m e n t a d d r e s s m o d e * I
6 d e f i n e BITSPERRORD 3 2 / * 3 2 b i t s p e r word * /
d e f i n e FIELDS I * q u i c k e r t o a c c e s s b i t f i e l d s * I
6 d e f i n e FORMAT “ \ t O x % l x L . \ n “ / * w r i t e a WRD * /
6 d e f i n e WRD u n s i g n e d l o n g I * 3 2 b i t s * I
e n d i f

The VAX has an autoincrement mode and its bitfield access instructions are quicker than
shifting and masking bits. The type “unsigned long” allocates one word of storage,
which is 32 bits long, and the contents of that word can be printed in hexadecimal using
the format string ‘“ltOx%lxL,h””. Note the “L” and the trailing ”h”; these make the
files containing the array definitions easy to read. The “,*’ is necessary because the
number is one in a sequence of numbers used to initialize an array, and the “L” indicates
the initialher is of type long. Notice that the VAX orders its bytes from right to left, so
NETORDER is not defined, and the 4.3 BSD UNlX C compiler arranges structure fields
in reverse order, so STRUCTFROMTOP is not defined.

The Convex C-1 does things differently. It has an autoincrement mode, orders
bytes from left to right, and allocates structure fields in the same way as the VAX; hence
AUTOINC and NETORDER are defined but STRUCTFROMTOP is not. It also has a
piplining mode in which two 32 bit words may be combined to form a 64 bit word; but in
this case, the bitfield extraction instructions cannot be used because they would cross the
32 bit word boundary. So, FIELDS is not defined, and BITSPERWORD is set to 64.
These 64 bit words must be declared as “unsigned long long ht”, are printed using the
special notation “%llx’*, and constants of that type must have “LL” on the end. This

- 5 -

leads to the following declaration block.
ttifdef convex
define AUTOINC /* autoincrement mode */
define BITSPERWORD 64 /* €4 bits per word */
define FORMAT 'IZOxB1LxLL.h" /* wnte a WORD */
delke NETORDER /* bytes ye in network order */
define WORD unsigned long long int /* 64 bits */
#en&f

3.9. Help and Summary
As an aid to determining the best values for these constants, there is a program that

will make various tests and suggest possible values. Set the makefile variable ${SYS-
TYPE} as described in the next section, and then type

make -s defines

The output will look like
/* these assume a word is declared as unsigned long int */
/* if not, my or all of the following may be bogus */

#define WORD unsigned long int/* NOT EVEN A GUESS */
#define FORMAT 'ItOx%lxL?n" /* NOT EVEN A GUESS */
Meline BITSPERWORD 32 /* 32 bits/unsigned long int */

#un&f STRUCTFROMTOP /* this should be correct */
#undef NETORDER /* bytes not in network order */

Mefine FIELDS /* this should be right */

/* the next two should be correct for this machine ... */

/* checking FIELDS ... this will take about two minutes */

/* checking AUTOINC ... this will take about two minutes */
h n & f AUTOINC /* WARNING -- toO close to bc SUR */

This suggests some possible values for the constants.
The first three macro definitions assume that the type of storage that allocates I

word is "unsigned long int". If this is false, all three definitions are probably wrong;
otherwise, they will be correct. This program was run on a Sequent and on that machine,
they are correct. (But on the Convex using 64 bits per word, this program would give the
same results as on the Sequent because on the Convex, the proper type is "unsigned long
long int".) The next two definitions are almost always right; here, they indicate that nei-
ther STRUCTFROMTOP nor NETORDER should be set. The last two take about two
minutes each to check, and involve timing some loops. They should be used as guide-
lines, because they are very sensitive to system load; for example, for the Sequent, the
settings shown happen to be best, but when the timings were taken for AUTOINC the
results were too close to be used without question. (This is when going to the architec-
ture manual and checking the code the compiler produces for the statement

x = *p++;

is a good idea.) Note that the program warns you of this in the comment field.

values.
The following table summarizes the constants that can be set and gives sample

- 6 -

sample vulue
1

11- machine/mach.h file constants I I
what

autoincrement addressing mode
32
1

'LOx%lxL,b"
1
1

unsi,med long

BITSPERWORD
FIELDS
FORiiAT
NETORDER
STRUCTFROMTOP
WORD

bits per WORD
use fields
print word-length constants
bytes in network order
structs from top to bottom
stores (machine) word

4. Password Changing Macros

These changes are to be made in passwd/sys.h. These are relevant only to the pass-
word changer, so they need not be made unless that program is to be installed. Each sys-
tem has its own methods of handling the password files; some allow the user to set the
GECOS field, some do password aging, and so forth. This section describes each
relevant constant and how it might be set.

-1.1. CHFN
If your machine uses the pusswd(1) command to allow users to change their

GECOS information, define this constant. One way to determine if this should be set is
to look for a command called chfn (1); if that command exists and is a link (or alias) to
pusswd (1). it should be set. The GECOS information is in the fifth field of the password
file, and usually includes the user's name, office, and telephone extension.

4.2. GETUSERSHELL
If your machine uses the pusswd (1) command to allow users to change their login

shell, define this macro to call the function returning valid user shells. The assumed cal-
ling sequence is that no arguments are passed, and each call returns either a string with
the full path name of a valid user shell, or NULL meaning the end of the list. One way to
determine if th is should be set is to look for a command called chsh (1); if that command
exists and is a link (or alias) to pusswd(l), it should be set. The name of the login shell
is in the seventh field of the password file, and usually must be chosen from a list of
shells in a system file.

4.3. AGE - FIELD
Set this if the password structure in the manual has the field "pw-age" defined.

This field is appended to the password field (field 2) and separated from the encrypted
field by a comma. To decide if this should be set, either look at gefpwnarn(3) in the
manual for that field, or check the password file for lines with a second field consisting of
13 characters followed by a c o m a and two more characters; if such a line is present,
define this.

- 7 -

4.4. FGETP WENT, SETP W FILE
These functions enable password files other than the default to be accessed, and

these need not be defined if only the default password file will be used.
$ (F G E T P W F I L E } is a macro that assumes its definition is 3 function called with a
pointer to the password file; on each call, it returns the passwd(5) suucture of the next
user in the file, or NULL if the end of the file has been reached. $(SETPWFU.E) is a
macro that assumes its dehition is a function called with the name of the password file;
it returns nothing, but once called, gerpwnam (3) and gerpwuid (3) use that file rather than
the default to obtain data associated with users. If both are defined, $ (F G E T P W E N T) is
used. If neither is defined, users can only change information in the default password
file.

4.5. SYSLOG
If the library losging system sysfog (3) is available, define this; if those functions are

available but require some library other than the default C library, set this macro to the
name of that library; if these functions are not available, don’t define it. These arc useful
for logging things.

4.6. DBMLIB
Some systems such as 4.3 BSD maintain a hashed version of the password file to

speed lookups. These versions arc usually maintained using the dbm(3) or ndbrn(3)
functions (the two are the same so far as this use is concerned.) Define this macro if the
password file is also stored using dbm (5) format; if that foxmat is used and this macro is
undefined, or if that format is not used and this macro is defined, the program will fail
miserably. Set the value to the name of the library containing these functions; if that is
the standard C library, you need only define the macro without setting it to anythmg. To
determine if you must set this, look for two files in the same directory as the password
file and having the extensions “.dir” and “.pag”. If they exist, you have to set it.

4.7. UID-TYPE
This is the type returned by the library function getuid(2). It may be set to int on

all machines this program has been ported to (so far), but it should be set properly to
keep lint happy. Look at the type of gemid (2) in the manual to find the proper setting.

4.8. RENAiME
If your system has a routine that renames a file atomically, define this to be that rou-

tine; the first argument is the old name and the second the new name. If this is not
defined. a sequence of unlink(2) and link(2) system calls will be used to acheive the
same effect. The problem with this is that should the program be interrupted (by a sys-
tem crash, for instance) during this sequence of system calls, the password file may not
exist under the correct name. If this happens, the system must be booted in single-user
mode and the temporary file renamed manually before switching to multi-user mode.

- 8 -

4.9. OPENLOG
Define this only if $(SYSLOG} is defined. The macro has three arguments; its

definition has either two or three arguments, depending on what your system has (see
openiog(3) for the right number.) If the right number is two, simply omit the last argu-
ment in the macro definition.

4.10. GETDOMAIN
This is defined to be a function of two arguments. The first argument is a character

array where the domain is to be defined; the second, the number of character spaces in
the first argument. It returns the domain name of the host. If no such function is avail-
able, do not define it; in this case the host name will be obtained using $ (GETHOST) or
$(HOSTNAME) and everything after the first period “.” will be used as the domain
name.

4.11. GETHOST
This is defined to be a function of two arguments. The first argument is a character

array where the domain is to be defined; the second, the number of character spaces in
the first argument. It returns the fully qualified (domained) name of the host. If no such
function is available, do not define it.

4.12. HOSTNAIME
If $(GETHOST) is undefined, define this to be the fully qualified (domained) name

of the host. For example, the host prandtl would have this set to prandtl.nas.nasa.gov.
This should not be set if $ (GETHOST) is defined.

4.13. ALLOWCORE
If set, passwd will generate a core dump should an appropriate signal be caught.

(See sigml(2) or sigvec(2) for a list of these signals.) WARNING: This option should
never be set for production; it is used only to debug the program, and creates a potential
securiiy hole in your syszem.

4.14. ROOTID
If set, passwd will assume the numeric value of this macro is the numeric UID of

the superuser. It is used to allow a systems programmer debugging the program to
change someone else’s password. WARNING: This option should never be set for pro-
duction: it is used only to debug the program, and creates a potential securiry hole in
your svstem.

4.15. Example
Here are sample settings for a vanilla BSD 4.2 system:

- 9 -

#ifdef BSD4-1
define CHFN
de& GETUSERSHELL() getusenhell()
de& RENAME(old,new) rename(oldsew)
define OPENLOG(a,b,c) openlog(a,b)
define SYSLOG
define UID-TYPE int
#endif

Here. both chfi (1) and chsh (1) are to be defined, the library logging system syslog (3) is
defined in the standard C library and openlog(3) has two, not three, arguments; there is
an atomic rename (2) function, and getuid (2) returns m int.

For the UTS operating system running on prandtl, an appropriate definition scheme
would be:

#ifdef SYSV
define AGE-FIELD
defiae FGETPWENT(x) fgetpwent(x)
d e b HOSTNAME prandtl.nas.nasa.gov
define UID-TYPE unsigned short
#endif

Prandtl is very close to a System V system, and the definitions above reflect this. Note
that the host name is compiled in, and the domain name will be derived from it (it will be
nas.nasa.gov.)

The following table summarizes the constants that can be set and gives sample
values.

field name
AGE-FIELD
ALLOWCORE
CHFN
DBMLIB
FGETPWENT
GETDOMAIN
GETHOST
GETUSERSHELL
HOSTNAME
OPENLOG
RENAME
ROOTID
SETPWFILE
SYSLOG
UUID TYPE

passwd/sys.h file constants
sample value

1
1
1

-1dbm
fgetpwent

get domainname
gethosmame
getusershell

hydra. riacs . edu
opedog
rename

0
setpwfile
syslog.0

whur
password aging implemented
allow core dumps (DANGER)
enable chfn(1) function
dbm(3) library
entry from alternate password file
get domain name
get host name
list legal login shells
host name

atomic tile rename function
uid of superuser
use alternate password file
sysfog(3) functions
type of geruid(2)

begin syslog(3)ging

- 10-

5. Makefile
These changes are to be made to the Makefle in the top-level directory. Make the

ones to lib/include/mach.h first since an aid to setting some of these requires that the
libraries compile. (See the last subsection of this section for details.)

5.1. AD‘MIN
Set this to the list of users who are to receive copies of the output of the password

checking system when no-one specific is named. This should be set to a specific person
or mailing alias, not to something generic like mot, because the output lists users and
passwords when they are found.

5.2. BINDIR

to be placed.
This is the name of the directory in which executable programs and shell scripts arc

5.3. CHKFILE
By default, the password tester checkpoints itself using a checkpoint fde in the

$(MISCDIR} directory with a base name of “mmddyy”; where mm is the month (01 -
12). dd is the day of the month (01 - 31), and yy is the last two digits of the year. Set
$(CHKFfLE) to what you want the base name to be if you want something else. Note
that the password checking mechanism creates two files with this base name; one has the
extension “.pwd” and the other the extension “.dit".

5.4. CHKTIME
The password tester is instructed to checkpoint itself every so often; this preserves

work if the system should crash. By default the password checking system checkpoints
itself every 600 seconds; to change this, reset $(CHKTIME) to the number of seconds
between checkpoints. Note that the minimum value of $(CHKTrME) is 300.

5.5. COPTS
This is a list of options passed to the compiler when the programs are generated. It

is not passed to the compiler when the library is generated. Currently, there are only two
flags of interest, and these apply only to the password checker:
“-DUSE-FULL-CRYPT”, which forces the interface to the standard crypt (3) function
to be used (which is a bit slower than the more compact interface, but allows the program
to be run using the system’s version of crypt), and
“-DCANT-ASSIGN-ALL-FIELDS”, which means that the compiler does not allow
structure assignment, but instead each field must be copied separately.

5.6. CRY, DES, SHC
These are the suffixes dictating which versions of the libraries are to be used. There

are three different main routines making up the library: the DES subroutines, the crypt
(CRY) subroutines, and the short crypt (SHC) subroutines. Each one may be one of four
different configurations; each of the four configurations is identified by two parameters.
The first parameter is the number of bits handed to the S boxes, and the second is the

I’ - t l -

number of permutations used to generate the key schedule (if you don’t understand these
terms, don’t worry.) Each of these parameters has two possible settings: the number of
bits handed to the S boxes will be either 6 or 12, and the number of permutations used to
e venerate the key schedule will be either 1 or 3. Thus, the four configurations of each
library are identified by the names 06Z ,063, I21 , and Z2.3. Setting DES to any of these
four values causes the appropriate configurations of the DES subroutines to be loaded
into the library; similarly, CRY indicates the configurations of the crypr subroutines to
use, and SHC the configurations of the short crypt subroutines to use.

For guidance on setting these, there is a program that will run a series of tests and
suggest values. See the last subsection of this section.

5.7. DESLIB
This is the full path name of the fast encryption library. The library’s basename

must be 1ihdes.a and the directory should be the same as $(UBDZR) unless the library
was compiled and installed separately.

5.8. DESLINT
This is the f in t (1) file generated from the fast encryption library. Currently it

should be left blank; someday, such a library will be supplied and might actually per-
suade lint to shut up.

5.9. DICTDIR
This is the directory containing word lists used as guesses by the password checker.

5.10. INCDIR
This is the name of the directory that the include file des. h is to be put in.

5.11. LIBDIR

as 1ibdes.a in this directory.
This is the name of the directory that the library is to be put in. It will be installed

5.12. LOCALLIB
Many of the executables in this system use the argument parsing function getopt (3),

which may not be in the standard library. If not, set this to the name of the file or library
containing the object version of this routine.

5.13. MAILER
This is the program that is used to mail the results of the password testing to the

appropriate people. It is invoked by giving the list of addresses, separated by blanks, as
command-line arguments, and the letter as standard input. If possible, a “Subject: ”
field may be specified using an “-s” option; see SUBJECT, below. procedure.

- 12-

5.14. MISCDIR
This directory contains several files used by the password checker to determine

where to get current password files and word lists as well as letters to send to users whose
accounts have no password or whose passwords have been guessed.

5.15. PWDDIR

The full password files as well as incremental changes to them are kept here.
This is the directory in which the password files of the hosts being checked are kept.

5.16. PWEXEC
This is the name under which the password changing program is to be installed.

5.17. PWFILE

$(PWEXEC} will change the passwords (and possibly the shell and GECOS fields) in it.
This is the name of the file in which users’ encrypted passwords are stored.

5.18. PWLOG
This is the name of the log file for the password changer. See section 7 for details.

5.19. PWTEST

detail in section 7.
This names the file describing allowable user passwords. It is described in more

5.20, PWTYPE
This is the parameter describing the type of the system so far as the password

changing program should know. It usually must be more specific than the generic
$(SYSTYPE) variable; for example, valid values are BSD4-2, BSD4-3, SUN, and
SYSV. If none of these are identical to your system, look in section 3 to set up your own
type, and set this to the constant that will include your definitions.

5.31. ROFF

guide) are printed with it.
This is the version of noff(1) that your site uses. Manual pages (as well as this

5.22. ROOTDIR
This is the name of the directory that the password checking system and its associ-

ated programs are to be placed in. It WLU be the root of a tree of directories used by that
checker. is to be installed in.

5.23. SUBJECT
The legal settings of this field are “yes” and “no”. If the mailer allows

specification of a “Subject: ’* header field by giving a command-line option of the form
“-s ”subject””, set this to “yes”. Then the first and second command-line arguments
will be set to “-s “subject””, and the addresses will be the third (and successive)

arguments.

5.24. SYSTYPE
Set this to “BSD4” if your machine uses the 4.2 or 4.3 Berkeley timing mechan-

isms; set it to “SYSV” id your machine uses the System V timing mechanisms. This
constant is used to compile various programs that time the routines and help you choose
the fastest for your system.

5.25. TBL
This is the version of tbl(1) that your site uses. It is used to print this guide.

5.26. TMPDIR

those files are placed.
The password checker generates many temporary files; this is the directory in which

5.27. VERSION
This describes the version of the library to make. Each version is in a subdirectory

of the directory lib named descompurer (for example, the VAX version is lib/desvax.) If
there is no version corresponding to your computer, use one of the generic versions.
Generic versions are located in the directorues named desnn, when nn is the maximum
number of bits per word. Currently only 32 and 64 bit words are supported (in subdirec-\
tories des32 and des64, respectively.) To determine which to use, use the following d e
of thumb: if your machine’s word size is 48 bits or more, it is safe to use the 64 bit pack-
age; if your machine’s word size is 24 bits or more, it is safe to use the 32 bit package; if
your machine’s word size is under 24 bits, this package won’t work. If your machine has
a wordsize of 96 bits, the package could be optimized even more; if you are willing to
allow the author to use your machine to generate such a package, please let him know!

5.28. Help and Summary
One important question is how to choose the best values for the makefile variables

$(DES), $(CRY}, and $ { S H C) . Then is a program, lib/testing/whichone, which will
generate recommended values. To execute it, set the makefile variables SYSTYPE and
VERSION correctly, and type

make -s recommend

(omit the “-s” if you want to see the commands as they are executed.) After quite some
time, this will generate output of the form

DES=121
cRY=123
SHC= 123

These are the recommended configurations for your system.
As with the recommendations for AUTOINC and FIELDS, these values are subject

to the vagraties of system loads. The program decides which configurations to recom-
mend by compiling all four configurations of each routine, and timing 10 runs each for
10 (virtual) seconds: it computes an average time per run from this data, and from these

- 14-

averages suggests an appropriate setting for each routine. The timings are a pretty reli-
able indicator of what is best, but it is recommended you run this during off hours or
when the load is relatively constant.

The following table summarizes the rnakefiie variables that can be set.

Maketile file
sample value

pwlist
$ (ROOTDIR)/=bin
none
600
none
123
123
$(UBDIR)/libdes.a
none
$ (ROOTDIR) /=dict
$ (ROOTDIR }/=include
$ (ROOTDIR)/=lib
none
/usr/ucb/Mail
$(ROOTDf.R)
/bm/passwd
/etc/passwd
/etc/passwd.log
/etc/passwd. test
BSD4-3
psroff
/usr/local/adm/pwcheck
123

BSD4
tbl
$ (ROOTDIR) /=tmp
des32

Yes

field name
ADMIN
BINDIR
CHKFILE
CHKTIME
COPTS
CRY
DES
DESLIB
DESLINT
DICTDIR
INCDIR
LIBDIR
LOCALLIB
MAILER
PWDDIR
PWEXEC
PWFILE
PWLOG
PWTEST
PWTYPE
ROFF
ROOTDIR
SHC
SUBJECT
SYSTYPE
TBL
TMPDTR
VERSION

constants
what

who gets output
where to put executables
checkpoint file’s base name
checkpoint interval (seconds)
compile options
config of crypt
config of DES
path name of library
lint library file
where to word lists
where to put include files
where to put 1ibdes.a
library containing geropt(3)
program to mail results
where to put password files
password changing program
default password file
password log file
password restriction file
type of password file
version of trofl1)
root of password system
config of short crypt

use 4.2 BSD timing functions
version of tbf(1)
where to put temporary files
version of library

does MAILER know “-S”

6. The Password Checker
The password checking system consists of a number of shell scripts and programs

that allow a system administrator to check passwords against a dictionary. The package
is installed during the procedure in section 2. This section describes how to set up and
run the package.

The password checking package requires two sets of data: the password files to be
checked and a set of dictionaries to check them against. A password file is obtained from
the system being checked by copying /etc/passwd (or some other appropriate file); a dic-
tionary is generated from a word list file as described below. In addition, assorted mis-
cellaneous files tie these all together.

- 15 -

First, we will describe each of the required files; then we shall describe the com-
mand used to check passwords. An appendix summarizes the possible error messages.

6.1. Word Lists
A word list is simply a file containing a list of words, one per line. Comments may

be interspersed by putting them on a line with a sharp "#" character in column 1. Words
in these files are used to generate a dictionary by the shell script $(rMISCDfR)/exec.list.

6.2. Dictionaries
The password checking system uses the words in a dictionary as possible pass-

words; it encrypts them and compares them to the encrypted passwords. Typically, dic-
tionaries are derived from word lists, but users may supply their own; in this latter case,
blank lines are deleted, words are truncated to 8 cheracters or less, and the words are
sorted before being merged into a system dictionary. As with word lists, dictionaries
have one word per line.

6.3. $(MISCDIR}lexec.list
A word list is turned into a dictionary by performing some transformation on the

list, auncating words to 8 cheracters, sorting the result, and pruning duplicates. This file,
which must be a Bourne shell sh(1) script, takes the word list name as its single argu-
ment, and possibly the debugging flags --K and/or -v as options. The program should
produce a new word list wit one word per line. (Sorting and truncation to 8 characters is
done later.) The default script will use the word list, its words spelled backwards, and
change cases of characters.

Note that the script must be of the Bourne variety. If desired, this file may call
another program. So, for example, to process word lists by using the C-shell script
cwords, this fiie should contain

csh cwords $*

6 .4 ${MISCDIR}/exec. pwds

A password file encodes information about users, such as account names, personal
names, and so forth, that oftcn is used as passwords. This file, which must be a Bourne
shell sh(1) script, takes the password tile name as its single argument, and possibly the
debugging flags -x and/or -v as options. The program should produce a new word list
wit one word per line. (Sorting and truncation to 8 characters is done later.) The default
script will use the name and GECOS field of the password file to generate a list of user
login names and personal names, ch it then runs through $(MlSCDZR)/exec.list.

Note that the script must be of the Bourne variety. If desired, this file may call
another program. So, for example, to process word lists by using the C-shell script
cpwds, this file should contain

csh cpwds $*

- 16-

6.5. ${ MISCDIR}lwordlists
This file contains a list of files containing word lists; these word Iists are used to

generate the dictionary used to test passwords. The path names should be absolute path
names, not relative ones; comments may be placed on lines with 3 sharp “#” in column
1 or after the path names and with a tab in front of them (no, blanks won‘t work.)

6.6. ${DICTDIR}/sysdict
This is the dictionary that is used to check passwords. It is made by processing the

files of word lists in $(MISCDIR}/wotdlists. When the password checker runs, it first
checks to see if any of those files have been changed since sysdict was last modified; if
so, sysdict is updated to reflect this fact. If not, sysdict is not changed. If sysdict does
not exist, it is created.

Note that unless told not to, the password checker will add to sysdict a word list
made up of information from the password files. This allows more complete checking to
be done.

6.7. ${MISCDIR}Ipwd.found, $(MISCDfR}/pwd.none, ${MISCDIR}/pwd.illegal
These files contain programs to mail messages that can be mailed to users if the

password checker determines their password, that they have no password, or that the the
password cannot be typcd, respectively. A sample file looks like:

I

cat << kxEOFxx I $MAILER 9% 1
Hello,

how easily I was able to guess it, this password does not provide
much protection against an unauthorized person using your account.
You should change it at once to something more difficult to guess,
such as your mother’s maiden name mis-spelled backwards.

Please contact the consultants if you have any questions.

The password to your account “%1” is “%2”. Considering

Thank you,
System Daemon

xxEOFxx

Within these files, the string “961” will be replaced by the user’s account name in the
form login@host, enabling the precise account to be identified; the string “%2” will be
replaced by the password (if one exists) or by nothing (if not).

The contents of these files may be changed as appropriate. The shell variables
SUBJECT and MAILER are defined in the environment when this is run. The contents
of the file are executed as input to the Bourne shell sh(1) after the “%” substitutions arc
made.

6.8. ${MISCDIR}/nocheck
This file lists specific users, one per line, whose passwords are not to be tested.

This turns off all password cracking for that user, including the check for an empty pass-
word. The account names must be in the same form as the recipient address, that is

- 17 -

login@host .

6.9. ${MISCDIR}/nonotify
This file lists specific users, one per line, who are not to be notified if their password

is found or they have no password, and the option to notify users of these events was
given. The account names must be in the same form as the recipient address, that is
login@host . The purpose of this file is to allow systems to have accounts such as guest
which have no password by design and not send warning mail to those accounts. In all
cases, the system will not* the $ (ADMIN) .

6.10. ${MISCDI.}/machines
This file contains a list of hosts whose password files are to be checked. Each line

contains one host; if the password file is other than the usual /etc/passwd, the line has the
form hosmame:passwordjile . (for example, icarus:/usrletcfpasswds). If no colon ‘ b : ”

occurs in the line, the word is taken to be the name of a host unless the character “/’*
appears, in which case it is taken to be the path name of the password file on the local
host. The path name should be an absolute path name, not a relative one; comments may
be placed on lines with a sharp “#” in column 1 or after the path names and with a tab in
front of them.

For example, in the following file
icarus
hsr/pwds
prandtl :/x/zork

the files /etc/passwd on icarus, /usr/pwds on the local host, and /x/zork on the host
prandtl will be analyzed.

The format of the names given is resmcted only by what cp (1) and $(REMCOPY}
will recognize and use.

6.11. $(PWDDIR)lhosmame, $(PWDDIR)lhostnam.old
These files contain the password file enmes for the named host, and the previous

password file for the named host. Note that each password file is given the host’s name;
this is vital since the user notification option will not work otherwise! Also, when the
password checker runs, all password files are amalgamated into one; this allows certain
optimizations that otherwise could not be made.

7. Running the Password Checker
The actual checking program is bidtestpwds. The interface is very simple but not

very user-friendly, because it assumes that it has access to dictionaries and password files
(see restpwds(8) for details.) The script runcheck provides a much cleaner interface; it
generates dictionaries, updates password files, and runs restpwds automatically.

Runcheck has several options:
-a This option lists the names of people to whom the results of the audit are to be sent.

If this option is given, no mail is sent to the address named in $ (A D M I N) . As an
example, the option

- 18 -

-aauditor,audit@domah

sends the results of the check to auditor and auditor@dornain.
This option uses file filename as a dictionary, in addition to any generated from the
word lists listed in $ { MISCDIR)/wordlists.
Normally, if no passwords have changed since the last time the password file was
updated, runcheck reports this and quits. This option forces runcheck to carry out
the checking anyway.
Normally, runcheck does not report users with illegal passwords. This option
instructs it to do so, and if the -u option is given, the appropriate users are also
notified.
Normally, runcheck updates password files only when something has changed.
This option prevents the updating and indeed even the checking for changed entries.
It directs runcheck to use the password files already in pwd.
Normally, runcheck adds information gleaned from the password files to
$(DICTDfR)/sysdict before using it; this option prevents that. If some word list
has changed, though, $(DICTDIR)/sysdict will be updated to reflect that.
This option causes runcheck to restart the checking of the last run. The run’s
checkpoint fdes are presumed to have the basename name, which should be a full
path name. (Normally, checkpoints go into the directory $(MISCDIR] and an
named as indicated in section 4.3.) Any other host names will be ignored; it is best
to give this option and no others.
With this option, two types of letters are sent to those users who are not in
$(MISCDIR)/nocheck and whose password runcheck has found or whose pass-
word runcheck has determined is empty. If the password is known, the fite
$(MISCDIR)/pwd.found is run through a program that substitutes the mail address
for “%1” and the password for “%2”, and then executes the contents of the file as
a Bourne shell command (which should result in a message being sent to the user;
see the previous section); if there is no password, the file $ (MISCDIR)/pwd.none is
run through a program that substitutes the mail addms for “%1’ * and then executes
the contents of the file as a Bourne shell command (which should result in a mes-
sage being sent to the user; see the previous section).
A typical command to check passwords would be:

runcheck -u -amab@riacs.edu

-d

-f

-i

-n

-P

--f

-U

This notifies users who have guessable passwords and sends a complete list of accounts
and passwords (as well as accounts with no passwords) to mab@riucs.edu .

runcheck - r / u s r / l o c a Y c r c / O 7 ~ 7 6

This restarts an interrupted run; the last checkpoint of the run was made on July 4, 1776
(yes, computer crackers have been around a long time.)

It is recommended you run a complete check when you install the system, then once
a night run incremental checks.

- 19-

8. Password Changer: Configuration File
The testfife implements the attempt to compromise between allowing the user to

choose the password and having the system assign one by allowing a system administra-
tor to limit the user's choice of passwords. This file contains a series of tests, each of
which the proposed password must fail in order to be accepted as an allowed new pass-
word. The file also contains some control information which dictates how certain parts
of the tests are done.

Horizontal tabs (ASCII HT) are important because they serve as separators on the
lines. In this section, they will be represented by the symbol <m.

8.1. Comment Lines
These are lines that start with "#", and are ignored. Note that "#" must be in

column 1 of the line; otherwise it will be interpreted as a (mangled) test and a syntax
error will be reported.

8.2. Test Lines
These are lines which are interpreted as tests. No special format is used; rather, any

line which does not fall into the types described in the remainder of this section is a test
line.

The line has the format

test <"I3 error message

The tests and error messages will be discussed separately.

8.2.1. Format of Tests

The tests have the following format:
To be accepted as a password, a proposed password must undergo a series of tests.

test ::= '(' test ')'
I rest ['&' I 'I'] rest
I ['!' I '-'I test
I numexp numop numexp
I string strop string

I NUMBER mathop NUMBER
numexp ::= '('NUMBER ')'

I ['+' I '-']* NUMBER
string ::= '"' STRING '"'

I '['FILE '1'
I ' (' PROGRAM ') '

mathop := '+' I '-' I '*' I '1' I '%'
numop := '=' I '!=* I '>=' 1 '<=' I 'e' I '>'
snap := '=' I '!=' I '=-' I a!-*

where the primitives are defined as follows.
NUMBER This is a string of decimal digits. It is always interpreted as a decimal

number.

STRING This is any sequence of ASCII characters. The standard C escapes are
recognized:

name ASCII nume I octal code
backmace BS 010

escape
\b

horizontal tab
newline
form feed
carriage return
double quotes
backslash

HT 1 011 L
NL (LF) 012 L.1
FF (NP) 0 14 \f
CR 015 L

042 \"
\ 134 \\

~~ ~

bit pattern
anything else

ddd Wdd
x Lc

- 21 -

Format Control in Escapes
control meaning

1 alphabetic characters are made upper case
alphabetic characters are made lower case
if the first character is alphabetic it is capitalized
interpolate the length of the string;
in this case the interpolated sequence is numeric

*
I

i

If the test is true for the proposed password, the proposed password is rejected; oth-
envise, it is accepted.

- 22 -

A..Z string user-definable escape
a number number of alphanumeric characters in proposed

b number number of alphabetic characters in proposed
password

Dassword

~~~ ~ ~~~~ 

0 string office Of user 
P string proposed password 

S string surname of user 
t string telephone number of user 

V number 1 if proposed password has both upper and 
1 U S t r i l l  

II c number number of caDitd letters in DrODOSed Dassword 11 

W number number of digits in proposed password 
J 4 

~~~~~~ ~ ~ ~ ~ 

d string domain name of computer
f string first name of user
1 string initials of user
1 number number of lower case letters in proposed password
m string middle name of user

11- n string full name of user It

For example, the sequence

%lf%lm%ls

would interpolate the first letter of the user’s first, middle, and last name; if any of these
is not defined, that sequence is ignored. Note that this is the same as the interpolation
sequence “%i”.

Now, suppose the user’s new password is to be “SleeZe&l”. Then “%a” is
replaced by 7, “%b” is replaced by 6, “%c” is replaced by 2, “%1” is replaced by 4,
“%v” is replaced by 1, and “%w” is replaced by 1.

8.2.3. Some Examples
Suppose passwords with 6 or fewer characters all being Iower case letters are to be

rejected. The following test evaluates true for al l such proposed passwords andfalse for
all others:

(%.#p C= 6) & (“%p” =- “[a-z]*”)

As a second example, people often make their password the same as their login
name, or their login name reversed, with variations in the case of the characters The fol-
lowing test will prevent this:

- 23 -

("%*p " -- -- ' '%*u'l) I ("%*p" == ''%o-*u'')

Note that the login name, its reverse, and the proposed password are all compared with
alphabetic characters in lower case.

New California automobile license plates have a digit followed by three letters fol-
lowed by three digits. To reject al l proposed passwords which might be valid new Cali-
fomia automobile license plates, use the following test:

("%*p" =- "[0-9][a-z][a-z][a-z][0-9][0-9][0-9]")

Now, suppose you have a set of words which a specific user might use as his pass-
word; for example, suppose user bishop 's wife's name is " Holly", her maiden name is
"Olson", and his children are named "Heidi" and "Steven". Any of these would be a
possible password, and very easy for someone who knows that user to guess. In this
case, put those passwords into a fie with the user's name as part of the file name (for this
example, call the file letc/passwds.badlbishop.str). Then the test

%p" = [/etc/passwds.bad/%u.str 1
will reject any proposed password in the file.

An alternative would be to list all the words for all users in a file (c d it
/etc/passwds.bad), and put the user's name followed by a colon and (optionally) some
white space. So, in the above, the lines for bishop would be:

bishop: Holly
bishop: Olson
bishop: Heidi
bishop: Steven

and the test

"%p" = (grep '̂ %u:[\I*' /etc/passwds.bad I sed -n '$:I*:[\t]Y.\)N/p')

would reject any proposed password deemed unsuitable for that user.
The standard LTNLx pusswd(1) program advises users that ''new passwords should

be at least five characters long, if they combine upper and lowercase characters, or at
least six characters long if in monocase." To force all passwords to meet this require-
ment, use the test

((%#tp >= 5) & (%v = 1)) i ((Y'C#p >= 6) & (%v = 0))

8.2.4. Error Messages
As stated before, the test is terminated by a tab or a newline. If a tab, the remainder

of the line is treated as an error message. When a user's proposed password satisfies a
test, by default the enor message

password invalid - no change

is printed. This is unhelpful, to say the least. Users should be told why their specific pro-
posed password was not acceptable. To cause a specific error message to be printed
when a password satisfies a given test, put the error message on the same line as the test
and separate it wit a horizontal tab character. For example, if a user asked that the

password be set to the user’s login name, the line

'yap" __ “You” c m password cannot be your login name

would cause the proposed password to be rejected with the error message

password cannot be your login name

8.3. Interpretation of the GECOS Field
The gecos field contains information about the user, usually his or her name, office,

and telephone number. This information is used to set the values of various interpolation
characters.

Basically, the format used at the site is defined by a scunf(3) format string followed
by a list of interpolation characters to which those strings are to be assigned. For exam-
ple, suppose a site kept the name, the office number, and the telephone number of users
in its gecos field; a typical field might be “Matt Bishop,N230-102,6921”. The line that
would set the interpolation characters properly would be

GECOS: “%s %s,%s,%s“ f s o t
and after processing this line, “f” would be set to the string “Matt”, “0” would be set
to the string “N230-102”, “s” would be set to the string “Bishop”, and “t” would be
set to the string “6921”.

Another, better, way to do this is to use the line

GECOS: “%~,],%o[^,],%s” n o t

This would set the interpolation sequence %n to the full name (“Matt Bishop” and %o
to the office name regardless of any blanks in either, and the first and last names would
be derived from the full name.

Only the interpolation characters A to 2, f, i, m, n, 0, s, and t may be set using this
method: The gems field is scanned ufer all occurrances of the character “&” in it have
been replaced by the user’s login name. Also, note that if the scunf fails (for example, if
the gecos field above had no commas), none of the values of the interpolation characters
are reset. So, if the password file has gecos fields using a variety of formats, a series of
these lines should be set up; as the lines are processed, those that match set (or reset) the
interpolation characters listed.

If the password changing program is compiled with CHFN set, two variants of this
line come into play. The line

SETGECOS: “%s %s,%s,%s” f s o t

acts just like the line beginning with “GECOS:”, except that when running to change the
gecos field, the user will be prompted to change each field. In the above, the dialogue
between the user and the program would be:

First Name matt]: John
Last Name (Bishop]: Doe
Office [N230-102]: 310 Bradley Huff
Phone Number (69211: 2415

- 25 -
and the new gecos field would be “John Doe.310 Bradley Hd1.2415”. Had the line
been

SETGECOS: “%[A,],%[n,l,%s” n o t

the dialogue between the user and the program would have been:

Name [Matt Bishop]: John Doe
Office [N230-102]: 310 Bradley Hall
Phone Number 1692 11: 2415

and the gecos field would have been as above. Note this will occur for the fist line
beginning with “SETGECOS:” that matches the pattern; a l l following lines wiU be
ignored.

The second variant comes into play when none of the “SETGECOS:” lines
matches the format of the gecos field. This line takes the following form:

FORCEGECOS: “%s %s,%s,%s” f s o t

It is completely ignored unless the user is resetting his gems field; then, it prompts for
the data requested by the interpolation characters and writes it out in the indicated for-
mat. For obvious reasons, there should be only one such line in the me, and it should fol-
low all “GECOS:” and “SETGECOS” lines.

As an example, suppose the user is changing his or her gecos field, and the
configuration file containes the following lines:

GECOS: “%s %s” f s
GECOS: ff%[..,],%[A,J,%s” n o t
SETGECOS: “%s %s,%s,%s” f s 0 t
GECOS: “%s %s %s” f m s
FORCEGECOS: “%s,%s,%s” n o t

If the gecos field is “Mary Smith”, the first line will set f to “Mary” and s to “Smith”.
None of the other lines match this format, so the “FORCEGECOS:” line will cause the
program to question Mary as follows:

Name Wary Smith]: Maria N. Smith
Office [I: 31 Dwinelle Hall
Phone Number 0: 2222

Now suppose the gecos field were “Mary Smith,21 Cory,1234”. In this case, the
second line would set n to “Mary Smith”, o to “21 Cory”, and t to “1234”. But the
third line also matches the gecos field, and since it is a “SETGECOS:” line the dialogue
would go:

First name [Mary]: Maria
Last name [Smith]: Smith
Office 121 Cory]: 31 Dwinelle HulZ
Phone Number [1234]: 1221

The “FORCEGECOS:” line would not be used since a “SETGECOS:” line matched
the format of the gecos field.

- 26 -

To change the prompt for any of these statements, use a line of the form

PROMF7‘: s “Surname [%SI: ”

and then whenever a value for the interpolation character is needed, the prompt

Surname [last name here]:

would be printed.

8.4. Setting Variables Unconditionally
Sometimes it is desirable to set variables independently of information in the pass-

word file. For example, suppose a site keeps the names of computer users and their
spouses in the file “/usr/adm/spouses”. There is no way to use the above mechanism to
access these names, but a site administrator should be able to use this data for testing
passwords. This may be done by the “SETVAR” statement, which has the form

S ETVAR: character value

Character is any of the user-definable interpolation characters A to 2, f, i , m, n, 0, s, and
t; value is the value to be assigned to it. Value may be a string, a file name, or a pro-
gram. Only the first line of a file, or of the output of a program, will be used. All C
escapes are rccognized, and the syntax is the same as for the tests. So,

SETVm. W (grep *%u* /usr/adm/spouses I sed -n *s/%u[\I*/&’ }

would assign to W the name of the spouse of the user,

8.5. Number of Significant Characters in the Password

ters of the password. To change this, put the line
By default, all pattern matching and string comparisons use only the first 8 charac-

SIGCHARS: number of significant Characters

before any tests. For example,

SIGCHARS: 6
instructs the program to consider only the first 6 characters of the password. If the
number of significant characters is 0, all chaactcrs arc considered significant.

Suppose then are n sigruficant characters. For all purposes, the password acts as
though it was exactly n characters long. S t h g comparisons are done on the first n char-
acters only; if either string is longer than n characters, the excess in both is ignored. (For
example, assuming 8 significant characters, if a user picked the password
“ambidext123”, and the passwords were tested against dictionary words, the word
“ambidextrous’* would match the proposed password, since the fist 8 letters of each are
the same.) Pattern matching is done on a password of length n ; extra characters in the
password (but not in the pattern) are ignored. (In the above example, suppose the pro-
posed password “ambidextl23 * * were being compared against the pattern
b‘[aA][mM~~B][~dexuous’’. The pattern match would fail, since “ambidext” does not
match the pattern. But if the pattern were “[aA][mMJ~B][iI]dext”, the pattern match
would succeed.) The idea here is to treat the proposed password exactly as UNlX would
treat a regular password.

- 27 -

On most UNIX systems, there may not be more than 8 significant characters in the
password, because the password encryption function only uses the first 8 characters. In
fact, the standard password reading subroutine only returns up to 8 characters, and dis-
cards the rest. But beware: if the number of significant characters is set to more than 8,
things will not work as expected, because even though there will be 8 characters in the
password, the strings used in comparisons may have more than 8 characters. So, continu-
ing the above example, if the number of significant characters were set to 9, the proposed
password “ambidextrous” would not match the dictionary word “ambidextrous”; the
comparison function would compare the proposed password “ambidext” with the first 9
characters of “ambidextrous”. Since there is an “r” at the end of the dictionary word
when truncated, the string comparison fails.

8.6. Logging Errors and Debugging Output
The password changer has the ability to log various intermediate results, syntax

errors, problems, and so forth. It should be emphasized thet the logging mechanism will
never log a proposed password unless it is being rejected: this preserves the integrity of
the user’s password, but allows experimental or debugging data to be gathered without
compromising accounts.

Logging is controlled by lines in the configuration file of the form
LOGTYPE: type,type, ... location

The type s of logging that may be done are:
system

use

result

item

syntax

debug

all
clear

This logs system errors (such as files which cannot be opened); these errors
may be reponed to the user, or they may simply cause the password program
to print a more general message saying that the password cannot be changed
now.
This logs who is running the program, whose password is being changed, the
name of the password file in which the change is being made, and the name
of the configuration file being used.
This logs the nxult (success or failure) of the attempt to change the pass-
word.
If the attempt to change the password fails because the proposed password
satisfies a test, this logs the line number of the specific test that was satisfied
and the error message printed for the user.
This logs any syntax errors in “GECOS:”, “LOGTYPE:”, or test lines. Ifa
test contains a syntax error, the test cannot be satisfied.
This logs debugging information. It prints all parameters set by “GECOS:”
and “SIGCHARS:” lines, and each test with all escapes fully expanded as
well as the result of the test.
This tums on all types of logging.
This terminates the logging to the particular locution.

As stated above, when logging many types of information, the names are listed with
commas between them. The types are evaluated in the given order, with successive types
being or’ed in. Initially, no logging is done. To tum off specific types of logging, put an

- 28 -

exclamation point '!' before the type. For example,

LOGTYPE: clear,all,!system <KD locution

turns on all types of logging except system logging. Note that

LOGTYPE: all
LOGTYPE: use,result.syntax,item,debug <W locution

would not do the same thing, since the first line turns system logging on, and the types on
the next line are just or'ed in.

I command The logging output is used as input to the program command. This is espe-
cially useful when command is a command to mail the output somewhere.

> file The logging output is appended to the file f i le. Note it does not overwrite
the contents of that file.

syslog This option is viable only if your system supports a system logging function.
It routes logging output to the system logging function. If this option is not
viable, it acts like the next location.
This writes logging output to the standard error (usually the user's screen.)
By default, logging output goes to the tile "/etc/passwd.log".

There are three or four ways to deal with logging information:

stderr

For example,
LOGTYPE: syntax,system <EFD 1 mail staff

sends all system and syntax error messages to all members of the stu# mail alias.

8.7. Sample Configuration File

fixed-width, smaller font; everythmg else is commentary.
In this section, we shall examine a typical configuration file. The file is printed in a

Sample Password Configuration Fde

Matt Bishop, Oct 6, 1987

These are the header commentary, to say what the file is.

establish GECOS format and define some variables
note we allow usen to reset the GECOS field, but
want them to conform to the format "name,office,telephow",
so we use the FORCEGECOS lioe to do thu

GECOS: "%SI' s
GECOS: "%s %s" f s
GECOS: "%s %s 8s" f m s
GECOS: "%s %s As %s" f m s P
GECOS: "%[̂,],%[̂,],%s" n 0 t
FORCEGECOS : "%s,%s,%s" n o t

r

- 29 -

At this site, two types of gecos entries occur: those of the form "name", and those of the
form "name,ufficeqhone". The first four try to match the first form (assigning the inter-
polation characters appropriately), and the last tries to match the second form. If the user
is simply changing the gecos field, regardless of which form is matched, the new entry
will be made to match the second form.

for system administntion, we log any problems

LOGLEVEL: c1eu.system.synta.x I mail pwlist

for experimental data, we record use. result, and item:
note a valid password is never logged

LOGLEVEL: use,redtitem > /usrIadm@asswd.expdata

We are logging two types of data. Whenever an error occurs, either in the configuration
file or due to the system's being unable to access something, the appropriate error mes-
sage is mailed to the address pwlist . Whenever someone tries to change a password, that
attempt and its success or failure are logged in the file "/usr/a~asswd.expdata". If
the attempt fails, the proposed password and the reason it was rejected are also logged.

#---- -------

%#p<6
%#b>l&%#V=O alphabetic chars, must be mixed case

general tests

password must be at least 6 chars long

Here, the minimum requirements for a password are checked it must be at least 6 charac-
ters long, and if there is more than one alphabetic character, both upper and lower case
alphabetic characters must occur.

some check on lazy people
"vO *p"="vo *u"
"~o*p"="~o~*u"
" ~ o * P " ~ " ~ o * f (first name not allowed as password
"90 *p"="90- If'
' 1% *p"="%*i"
"To *p"="%- *i"
"To *p"="%
"To *p"="~-*s"
~'90*p''"0*0'' office not allowed as password
"To +pl*&'vo,*o'l
'1% *P"=l"~o*t"
'1% *p"a-y& If"

These tests eliminate some obvious passwords. Note we map everything into lower case
first; that way, we need not worry about people ushg their login name with the first letter
capitalized, for example.

login name not allowed as password
reversed login name not allowed as password

reversed fim name not allowed as password
initials not allowed as password

reversed initials not allowed as password
last m e not allowed as password

reversed last name not allowed as password

revened office not allowed as password
phone number not allowed as password

reversed phone number not allowed as password

- 30 -

hock off (most) licence plates

%w=%#p
((% W+ I)=%#p)&&(" %- 1 *p"=-"[a-zl "))
"~*p"=-"[o-9a-zl[0-9a-z][0-9] *"

NH license plate not allowed as password
same

VT license plate not allowed as password

Here, we try to prevent users from using their license plate. We can't cover every case
because most states will allow you to have any set of 8 (or so) characters on your license
plate, but we can cover most. New Hampshire licence plates tend to be all numbers or all
numbers with a trailing letter; the first two tests take care of them. Vermont license
plates have two letters or numbers followed by a string of numbers; the third test elim-
inates them.

sitehost names

,'To "p"=-"%h"
"qo "p"=-"%-h"
"To +p"=-"q/cd"
"90 *p"=-"904
"90 *p"'"90h 9& domained host name not allowed as password
"%*p"='~etc/hosts.equiv]

Very often, users will make part of their password depend on the host name, the domain
name, or the name of a trusted host. These tests reject any password with those as part.
Note that we do not have any one-letter hosts here; if we did, we would have required
exact matches.

dictionary words -- look for strange c;lpitalizatons too

(tr A-2 a-z c /usr/dict/words}

This test compares the password to all words in the dictionary; comparison is done in
lower case only. That way, capitalizing a word in the dictionary will not make it an
acceptable password. Note this is done by running the command tr (1) on the dictionary.

host name not allowed as password
reversed host name not allowed as password
domain name not allowed as password

reversed domain name not allowed as password

trusted host name not allowed as password

1 "Wp" password is in dictionary

9. Password Checker: Error Messages and What to Do
This section lists possible error messages from the password checking system and

how to handle them. System errors may come from a number of other programs, and
these are not included.

runcheck: unknown option option

tion 6 of this document) and try again.
The program runcheck was run with incorrect options. Check the manual (or sec-

runcheck: -a flag requires addresses to send output
Runcheck was instructed to reroute output to someone other than the default

administrators but no other address was provided. Rerun the program, giving the

-31 -

appropriate address after the -a option.

runcheck: -d flag requires dictionary name

named. Rerun runcheck, naming the dictionary after the -d option.
The flag indicating the name of a dictionary was given, but no dictionary was

runcheck: must check all passwords i f not updating password files
The -n option was given and the -f option was not. Since runcheck has no way of

determining which passwords were changed without updating the password files, it
printsthis waming and sets the -f option automatically.

runcheck: WARNING: the system dictionaryfilename is empty.
This means that only illegal o r empty passwords wil l
be found. Please check that you are issuing the runcheck
command properly.

The system dictionary constructed from the word lists, command line dictionaries,
and password files (as appropriate) contains no words. The program will now only report
missing passwords and (if the -i option is given) illegal passwords. This is not an error,
but a waming because it probably is not what was intended.

testpwds: no more room (ualloc (malloc))
testpwds: no more room (ualloc (realloc))
testpwds: no more room (ialloc)
testpwds: no more room (stralloc)
testpwds: ran out of room (p2calloc)
testpwds: no more room (dalloc (malloc))
testpwds: no more room (dalloc (realloc))

passwords.
These messages mean that too many passwords are being checked. Check fewer

testpwds: warning: mock password file is filenume
testpwds: warning: dictionary file is filenume

The password checker could not save the checkpoint files where it was told to, so it
invented its own names. All future checkpointing done by the process is done to the
named files.

day: localtime0 returned NULL!

should never happen, since it indicates serious system problems.
The system could not generate the expected name for checkpointing files. This

Usage: pwgrep strfile [file1 ... 1

runcheck, this should never happen.
The program pwgrep was called incorrectly. Since it is only called by the script

pwgrep: malloc: ran out of room [strsave)

- 32 -

pwgrep: rnalloc: ran out of room [psavel
pwgrep: realloc: ran out of room [psave]

entries. Try splitting the password files half.
These messages mean that the password files being checked contain too many

subst: too many fields (limit 10)

called by the script runcheck, this should never happen.
Too many fields are being produced as input to subst. As this program is only

getpw: unknown option option
diffpw: unknown option option
diffpw: too many options

called by the script runcheck, this should never happen.
The programs diffpw or getpw were called incorrectly. As these programs are only

9.1. Troubleshooting

Runcheck has two debugging options: -v and -K. These act just h e the options -v
and --x to the Bourne shell sh (1) The --x option prints the commands and their arguments
as they are executed; it is very useful when strange error messages occur, because it is
propogated to all shell scripts invoked by runcheck, and so can be used to see precisely
what command is giving the error. The -v option is useful when the scripts art changed;
other than that, it’s not much good.

Both options generate lots of output, and unless you know the Bourne shell quite
well, you may find the output confusing. So use these options judiciously.

CAP (1) U N X Programmer's Manual CAP (1)

NAME
cap - capitalize the first letter of each line

SYNOPSIS
cap

Cap copies the standard input to the standard output, and if the first character on the line is a
letter, cop changes its case.

DESCRIPTION

SEE ALSO
t 4 1)

7th Edition 1

CANEXEC (1) CINIX Programmer's Manual CANEXEC (1)

NAME
canexec - determine if a command can be executed

SYNOPSIS
canexec command

DESCRIPTION
Conetee attempts to execute the given shell script command; it is assumed t o be a command
script for the Bourne shell r h (1) . If it succeeds, the exit status returned is that of command;
otherwise, it returns an exit status of 1.

test(1)
SEE ALSO

7th Edition 1

CRYPTDES (1) UNIX Programmer's Manual CRYPTDES (1)

NAME
cryptdes - encode/decode using the Data Encryption Standard

c ryp tdes [-i] [password]

Cryptdcr reads from the standard input and writes on the standard output. The parrword is a
key that selects a particular transformation. If no parrword is given, eryptdcr demands a key
from the terminal and turns off printing while the key is being typed in. Cryptder encrypts and
decrypts with the same key:

SYNOPSIS

DESCRIPTION

cryptda key <clear >cypher
cryptdes -i key <cypher I pr

will print the clear. (If the -i switch is present, cryptdcr decrypts the input; if that switch is not
present, it encrypts the input.)

Der implements the Data Encryption Standard proposed by FIF'S. This standard is considered
very secure. The only method of decrypting known now is a direct search of the key space, which
is considered computationally infeasible.

Since the key is an argument to the cryptdcr command, it is potentially visible to users executing
p r (1) or a derivative. To minimize this possibility, cryptdcr takes care to destroy any record of
the key immediately upon entry. No doubt the choice of keys and key security are the most
vulnerable aspect of cryptder .

!dev/tty for typed key

Data Encryption Standard, Federal Information Processing Standard #46, National Bureau of
Standards, U.S. Department of Commerce (January 1977)
A Fast Verrion o f the DES and A Parrword Encryption Algorithm, Matt Bishop, Research Insti-
tute for Advanced Computer Science

FILES

SEE ALSO

crypt (l) , des(J)
BUGS

There is a controversy raging over whether the DES will still be secure in a few years. The advent
of special-purpose hardware could reduce the cost of a direct search of the key space enough SO

that such an attack is no longer computationally feasible.

There is no warranty of merchantability nor any warranty of fitness for a particular purpose nor
any other warranty, either express or implied, M to the accuracy of the enclosed materials or M

to their suitability For any particular purpose. Accordingly, the user assumes full responsibility
for their use. Further, the author assumes no obligation to furnish any assistance of any kind
whatsoever, or to furnish any additional information or documentation.

Matt Bishop
Research Institute For Advanced Computer Science
Mail Stop 230-5
NASA Ames Research Center
Moflett Field, CA 94035

AUTHOR

Electronic mail addresses:
ARPA: mabQriacs.edu, mabQicarus.riacs.edu
UUCP: decvax!decwrl!riacs!mab, ihnp4!ames!riacs!mab, ucbvax!ames!riacs!mab

7th Edition NAS 1

DAY (1) UNIX Programmer’s Manual DAY (1)

NAME
day - print the date in rnmddyy format

day

Day prints the date as six digits, the first two being the number of the month (1-12), the next
two being the number of the day of the month (1-31), and the last two being the last two digits
of the year.

date(1)

SYNOPSIS

DESCRIPTION

SEE ALSO

7th Edition 1

DIFFPW (1) UNIX Programmer’s .Manual DIFFPW (1)

NAME
diffpw - print the password file entries which differ

diffpw[-x] [-v 1 oldpwjile newpwjile

Diffpw compares the first two fields of each line in oldpwfilc to those of each line in ncwpwjile,
both of which are files in the format of p o r r w d (5) , and prints those lines in newpwfile which are
not in, or differ from those in, oldpwfilc . If any such lines are found, the exit status is 0; other-
wise it is 1.

Options are:

-v,-x These are used for debugging; -v prints each input line as it is read, and -x prints each

SYNOPSIS

DESCRIPTION

command and its arguments before it is executed. See rh (1) for more details.

FILES
/usr/locsl/adm f passwd/Misc f pwdnnnnnc

passwd(5)

first two fields of the password files

SEE ALSO

7th Edition 1

GETPW (1) UNIX Programmer’s Manual GETPW (1)

NAME
getpw - fetch and update remote password file

getpw! -v j [-x

Getpw copies the password file pwfilc to localfile. Both file names are of the form hort:firenarnc;
if firename is omitted, it is replaced by “/etc/passwd” in pwfire and “passwd” in loealfile. I€
hort: is omitted, the local host is used.

Options are:

-v, -x

SYNOPSIS
localfile pwfile

DESCRIPTION

These are debugging options: -V prints each input line as it is read, and -x prints each
command and its arguments before it is executed. See rh (1) for more details.

7 th Edition 1

PASSWD (1) UNIX Programmer’s Manual PASSWD (1)

NAME
chfn, chsh, passwd - change password file information

passwd[- P f i l e] [- t f i l e] (- f] [- s] [n a m e]
C h h

chsh

This command changes (or installs) the password, the GECOS information (using the -f
option), or the login shell (using the -s option) associated with the user name (your own name
by default).

When altering a password, the program prompts for the current password and then for the new
one. The caller must supply both. The new password must be typed twice to forestall mistakes.

New passwords are tested to ensure that they are not easy to guess. The specific tests used vary
from site to site. Unlike the standard password command, these rules may be abrogated only by
changing the tests. The tests are contained in the file /e tc /porrwd. ter t ; the superuser may
specify another test file with the -t option. This is intended for debugging a new test file.

Only the owner of the name or the super-user may change a password; the owner must prove he
knows the old password.

When altering a login shell, parrwd displays the current login shell and then prompts for the new
one. The new login shell must be one of the approved shells listed in /etc/rhellr unless you are
the super-user. If /etc/rhelh does not exist, the only shells that may be specified are /bin/rh and
/bin/crh .
The super-user may change anyone’s login shell; normal users may only change their own login
shell.

When altering the GECOS information field, parrwd displays the current information, broken
into fields, as interpreted by the finger(1) program, among others, and prompts for new values.
These fields vary from site to site. Included in each prompt is a default value, which is enclosed
between brackets. The default value is accepted simply by typing a carriage return. To enter a
blank field, the word “none” may be typed. Below is a sample run for a format that specifies full
name, office number, and telephone number:

SYNOPSIS

DE SCRIPTION

Name [Johnathan D. Doe]:
O a c e [I600 Brilliant]: 212 Silly
Phone [(125)555-1212~2307]: none

Parrwd allows phone numbers to be entered with or without hyphens. It is a good idea to run
finger after changing the GECOS information to make sure everything is setup properly.

The super-user may change anyone’s GECOS information; normal users may only change their
own.

All changes are made to the file /etc/parrwd unless an alternate password file is specified with the
-F option.

/etc/passwd
/ etc/ passwd.test
/etc/shells

login(l) , finger(l), passwd(3), crypt(3)
Robert Morris and Ken Thompson, UNZX password recurity

FILES
The file containing all of this information

The list of approved shells
The set of tests for new passwords

SEE ALSO

4th Berkeley Distribution September 29, 1987 1

PWGREP (1) UNIX Programmer’s Manual PWGREP (1)

NAME
pwgrep - print the lines containing password entries

pwgrep pwlirt pwjile

Pwlir t contains a list of names or a list of names and encrypted passwords separated by a colon.
Pwgrep prints those lines in p w f l e which begin with that string. Unlike g r e p (l) , it deals with
strings and not patterns; unlike fgrep (I), it forces matches to start a t the beginning of a line.

SYNOPSIS

DESCRIPTION

SEE ALSO
f W P (1) * W P (1)

7th Edition 1

REV (1) UNIX Programmer’s Manual REV (1)

NAME
rev - reverse the line in a file

SYNOPSIS
rev [file 1 ...

Rev copies each named file to the output, reversing the lines. If no files are named, input is taken
from the standard input.

DES CRIPTION

7th Edition 1

RUNCHECK (1) UNIX Programmer’s Manual RUNCHECK (1)

NAME
runcheck - run the password checker

runcheck [-aadrninl,...] 1 -dfile] [-f] [-i] [--n] -p I [-rrertart] [-u] [-v] [-x 1

Runcheck attempts to find passwords by guessing words from a dictionary. It warns when it
finds accounts with no passwords and accounts with passwords that it can guess. Normally, it
determines which passwords (if any) have changed since the last check, and tests only those; this
is called incremental terting .
Options are:

-aadminl, . . .

SYNOPSIS

DESCRIPTION

Copies of lists of accounts with no passwords, accounts with invalid passwords (which
therefore cannot be logged into), and accounts with passwords that tertpwdr(1) can
guess are sent t o the mailing addresses odminl,

-dfile This treats file as a dictionary; the words in it are tried as passwords without further
processing. Each line contains one word.

-f This forces all hosts t o be checked whether or not the password files have changed since
the last check.

This causes invalid passwords t o be reported as well as empty o r guessable ones. These
passwords prevent anyone from logging in in a situation where a password is required,
such as by using login(1); however, if the password mechanism can be circumvented (M
with rlogin (1)) , the account may be used.

With this option, no updating is done; the local copies of the password files are checked.
Without this option, runeheck would update these first, and (if no changes, report that
nothing had changed.

Normally, runcheck augments the system dictionary with words from the host’s password
file. T o prevent this and force only the words in the system dictionary to be used, set
this option.

If a run is terminated prematurely, it is checkpointed in two files
/usr/local/adm/passwd/Misc/ mmddyy.dic and
/usr/local/adm/passwd/Misc/rnmddyy.pwd, where mmddyy is the month, day, and year
of the interrupted run. T o continue this run, give this option with the name of the
checkpoint file.

Notify users whose passwords have been guessed or who have no password.

These are debugging options: -v prints each input line as it is read, and -X prints each
command and its arguments before it is executed. See rh (1) for more details.

/usr/local/adm/passwd/Misc/nocheck list of users not t o check
/usr/local/adm/passwd/Misc/nonotify list of users not t o notify
/usr/local/adm/passwd/Misc/machines list of hosts t o check
/usr,llocal,/adm/passwd/Misc/dictions list of word lists t o make dictionary
/usr/ local/adm/ passwd /Misc/pwd. found
/usr/local/adm/passwd/Misc/pwd.nonecommand to mail empty password message
/usr/local/adm/passwd/?&c/pwd.illegal
/usr/local/adm/passwd/Dict/sysdict
/usr/local/adm/passwd/Misc/exec.pwds

-i

-n

-p

-rrertart

-u
-v, -x

command to mail password found message

command to mail invalid password message

program to make dictionary from password file
composite of all dictionaries and password files

7th Edition 1

RUNCHECK (1) UNIX Programmer’s Manual RUNCHECK (1)

/usr/locsl/adm/passwd/Misc/exec.l~t program to make dictionary from word list
/usr/local/adm/passwdlMisc/exec.dict program to make dictionary from dictionary

Installing the Fast DES and UNIX Pasrword Package, Matt Bishop
passwd(l) , testpwds(1)

SEE ALSO

7th Edition 2

SUBST (1) UNIX Programmer’s Manual SCBST (1)

NAME
subst - substitute lines in a file

subst file

Input to rubrt consists of a series of lines divided into fields by horizontal tabs. For each input
line, f;le is read, all character strings of the form “%n” (with n between 1 and 9 inclusive) are
replaced by the n th field in the line, and the result is printed on the standard output. If there
are fewer than 9 fields in the input line, the undefined fields are treated as empty. If “%” is fol-
lowed by any other character, it is eaten; for example, to print a percent, use two percent signs.

sed(1)

SYNOPSIS

DESCRIPTION

SEE ALSO

7 t h Edition 1

TESTPWDS (1) UNIX Programmer’s Manual TESTPWDS (1)

NAME
testpwds - look for obvious passwords

testpwds 1 -cefile 1 [-d] [-1lfile 1 [-mlevel r] [-0ofile] [- p p f l e] [-rrfile 1 [-tinterual] [
-v] [dic t ionaryJi le]

Tertpwdr attempts to find passwords by guessing words from one or more dictionaries. It warns
when it finds accounts with no passwords, accounts with invalid passwords (which therefore can-
not be logged into), and accounts with passwords that it can guess. By default, the syatem’s
password file is used, the potential passwords are read from the named dietionaryfFJer or (if
none are given) the standard input, and output is sent to the standard output. Dictionaries have
the form of one word per line, and the words are tested in order.

Available options are:

-d Produce debugging output; this is useful only to maintainers of the program, and is
available only if compiled in.

-1 l f le When tertpwdr has completed its run, write a “mock password file” named l f l c contain-
ing the names and encrypted passwords of all users whose passwords were not found.
This file has the same format as a regular password file, but only the 6rst two fields are
non-empty; This file may be used as an argument to the - p option to test against
another dictionary.

This tells the program what types of password problems to report. Known levels are: e
for empty password fields (ie, no passwords needed to log in); i for illegal passwords (ie,
passwords with no corresponding cleartext); and f for found passwords (ie, passwords
which have been cracked). More than one level may be specified in which case the union
of all levels is printed. The default level setting is ef, since these indicate accounts that
may be accessed illicitly.

SYNOPSIS

DES CRIP TI O N

-mlevel r

-oofile Append all output t o the file o p e rather than to the standard output.

-PPfile
Check passwords in the file pfile rather than in the system password file. Pfile is
assumed to have the format described in p a r r w d (5) . Multiple -p arguments may be
given, but since all password files are read before any testing occurs, the order in which
the passwords are checked is not necessarily the order in which the users are listed in the
password files.

Enter verbose mode. In this mode, if a user’s password cannot be found, a message is
printed on the output. Normally, only accounts with no passwords, with illegal
encrypted passwords, and with known passwords are printed.

-v

CHECKPOINTING

Because running this program may consume quite some time, tertpwdr will checkpoint itself when
signalled with any signal other than one used for job control (in 4.2 BSD, these are SIGSTOP,
SIGTSTP, SIGCONT, and SIGCHLD; in System V, this is SIGCLD; see signal(2) or S i p

nal (3)) . The checkpoint consists of two tiles: a “mock password file” (see the description of the
-1 option, above) and a “dictionary list file,” which contains information about the dictionaries
being used. By default, the first of these is named “pwdszzzzzz.pwd” and the second is named
“pwdszzzzzz.dic” Tertpwdr may be restarted at a later date from the checkpoint by specifying
“pwdszzzzzz.pwd” as the password file using the - p option, and “pwdszzzzzz.dic” as the restart
file (using the -r option described below). Any number of restart files and mock password files

7th Edition NAS 1

I .

TESTPWDS (1) UNIX Programmer’s Manual TESTPWDS (1)

may be named; the restart files will be processed in order.

Options are:

-ccf i lc Set the name of the checkpoint files t o cf i le . The mock password file will be named

- t interuol

c c c j i l c .pwd” and the dictionary list file will be named “cfile.die”

Checkpoint the run every interval seconds. The minimum acceptable value for interuol is
300 (that is, 5 minutes.) If this option is omitted, checkpointing is done only when one of
the above-named signals is received.

-rrfile Restart an interrupted run using rfile as the restart file.

If SIGHUP is issued, the run continues after the checkpointing. If any other signal, except for
the job control signals, is received the run will be checkpointed and then terminate.

/etc/passwd default password file

“An Application of a Fast Data Encryption Standard Implementation,” Matt Bishop
passwd(l) , crypt(f) , des(S), passwd(5)

This program was inspired by one that originated at the School of Electrical Engineering at Pur-
due University.

FILES

SEE ALSO

AUTHOR

7th Edition NAS 2

DES (3) UNIX Programmer's Manual DES (3)

NAME
des - fast implementation of the Data Encryption Standard

char *crypt(key, salt)
char *key, *salt;
setkey(key)
char key[641 ;

encrypt(block, flag)
e har block [a]
des-schedule(inverse)
int inverse;
des-key (bits)
char key[81;

des-mn(mesg)
char mesg[8];
#include des.h
Unit *she-crypt(key, salt)
char *key, *salt;
/include des.h
Unit *decrypt (pasword)
char *password
int des-bits(), cry-bits(), shc-bits()
int desgath() , crygath() , shcgath()
int desgermkey(), crygermkey(), shcgermkey()

SYNOPSIS

DESCRIPTION
These routines implement the DES as described in the standard, but in a way that is much faster
(typically, on the order of 25 times faster) than the standard routines. Crypt, setkey, and
encrypt provide the standard interface to these routines (see crypt(S)). The other entry points
provide a faster interface.
PASSWORD ENCRYPTION

Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard.
with variations intended (among other things) to frustrate use of hardware implementations of
the DES for key search.

The first argument to crypt is normally a user's typed password. The second is a two character
string chosen from the set [./0-9A-Zs-z]. The salt string is used to perturb the DES algorithm in
one of 4096 different ways, after which the password is used as the key to encrypt a constant
string repeatedly. The returned value points to the encrypted password, which uses characters
from the same set as the salt. The first two characters are the salt itself.

UNIX INTERFACE TO THE DES ROUTINES

Setkey sets the key of the DES algorithm. The key should be decomposed so each character ele-
ment of the array key contains one bit of the key in the lowest order bit. Encrypt does the
encryption or decryption. The first argument to it is likewise the message to be encrypted or
decrypted, with one bit per character element. This array is modified in place to a similar array
representing the bits of the input after having been subjected to the DES algorithm using the key
set by setkey. If the second argument flag is 0, meup is encrypted; if not, it is decrypted.

7th Edition NAS 1

DES (3) UNIX Programmer's Manual DES (3)

DIRECT ACCESS TO THE DES ROUTINES

Des-schedule determines the order of the key schedule; if its argument is 0, the order generated
is suitable for encryption, and if the argument is 1, the order is suitable for decryption.
Der-schedule must be called before der-key . Des-key generates the appropriate key schedule for
the translation algorithm. Its argument is the key, which is an array of up to eight characters.
(Note that if the key is under eight characters, all characters after the final one in the key murt
be '\O'.) Der-run takes the eight character mer9 and either encrypts or decrypts it (as indicated
by der-schedule) using the key schedule generated by der-key. The transformation is done in
place. Notice each block is eight characters long; do not drop any bits or the transformation will
be uninvertible!

PASSWORD TESTING FUNCTIONS

The functions rhc-crypt and decrypt are provided to allow quick testing of passwords. Decrypt
takes the encrypted form of a password, partially decrypts it, and returns a pointer to that par-
tial form. She-crypt takes a plaintext password and the associated salt and returns a partially
encrypted form of the password. If the encrypted password was produced by encrypting the
plaintext password and associated salt, the two partial forms will match. If not, the two partial
forms will not match.

SUPPORT FUNCTIONS

The following functions provide information about the way the DES routines work.

Der-bib, cry-bits, and rhe-bit4 return the number of bits that the encrypt (and der-run),
crypt, and rhc-crypt routines were designed to use (this is usually, though not always, the word
size of the machine.)

D e s g a t h , c r y g a t h , and s h c g a t h return the number of bits encrypt (and der-run), crypt, and
rhe-crypt use to access the S boxes within the innermost loop of the algorithm.

D e r g e r m k e y c r y g e r m k e y , and rhcgermkey return 1 if encrypt (and der-run), crypt, and
she-crypt compute the key schedule using a single permutation, and 0 if not.

INTERMIXING CALLS
There are three key schedules used: one by crypt, one by the ordinary DES routines, and one by
she-crypt . Calls to these functions may be intermixed freely, since the key schedules are indepen-
dent. However, calling setkey and encrypt sets a key schedule ordering that uses the same storage
as the key schedule for der-key and der-run. It is therefore exceedingly unwise to mix calls to
setkey and encrypt with calls to der-key and der-run.

Crypt, rhc-crypt , and decrypt all return pointers to (private) static storage areas, so calling the
same function twice destroys the result of the first call unless it has been copied elsewhere.

/usr/local/lib 1libdes.a library

Data Encryption Standard, Federal Information Processing Standard #46, National Bureau of
Standards, U.S. Department of Commerce (January 1977)
A Fast Version of the DES and A Password Encryption Algorithm. Matt Bishop, Research Insti-
tute for -4dvanced Computer Science

Matt Bishop
Research Institute for Advanced Computer Science
Mail Stop 230-5
NASA Ames Research Center

WARNINGS

FILES

SEE ALSO

AUTHOR

7th Edition NAS 2

DES (3) CNIX Programmer's Manual

Moffett Field, CA 94055

Electronic mail addresses:
ARPA: mabOriacs.edu, mabOicarus.riacs.edu
UUCP: decvax!decwrl!riacs!mab, ihnp4!smes!riacs!mab, ucbvax!ames!riacs!mab

7th Edition NAS

DES (3)

3

